Solution of important Questions
Qbasic
program to check entered letter is capital or small (uppercase or lowercase)
REM PROGRAM TO CHECK ENTERED NUMBER
IS UPPERCASE OR LOWERCASE
CLS
INPUT “Enter a letter”;A$
U$=UCASE$(A$)
IF U$=A$ THEN
PRINT “It is capital letter”
ELSE
PRINT “It is small letter”
ENDIF
END
CLS
INPUT “Enter a letter”;A$
U$=UCASE$(A$)
IF U$=A$ THEN
PRINT “It is capital letter”
ELSE
PRINT “It is small letter”
ENDIF
END
USING DECLARE FUNCTION PROCEDURE
DECLARE FUNCTION UC$ (A$)
CLS
INPUT “Enter a letter”; A$
PRINT UC$(A$)
END
CLS
INPUT “Enter a letter”; A$
PRINT UC$(A$)
END
FUNCTION UC$ (A$)
CH$ = UCASE$(A$)
IF A$ = CH$ THEN
UC$ = “It is capital letter”
ELSE
UC$ = “It is small letter”
END IF
END FUNCTION
CH$ = UCASE$(A$)
IF A$ = CH$ THEN
UC$ = “It is capital letter”
ELSE
UC$ = “It is small letter”
END IF
END FUNCTION
USING DECLARE SUB PROCEDURE
DECLARE SUB UC(A$)
CLS
INPUT “Enter a letter”; A$
CALL UC(A$)
END
CLS
INPUT “Enter a letter”; A$
CALL UC(A$)
END
SUB UC(A$)
CH$ = UCASE$(A$)
IF A$ = CH$ THEN
PRINT “It is capital letter”
ELSE
PRINT “It is small letter”
END IF
END SUB
CH$ = UCASE$(A$)
IF A$ = CH$ THEN
PRINT “It is capital letter”
ELSE
PRINT “It is small letter”
END IF
END SUB
CLS
INPUT “ENTER A NUMBER”; N
S = N
WHILE N <> 0
A = N MOD 10
R = R * 10 + A
N = FIX(N / 10)
WEND
IF S = R THEN
PRINT “THE GIVEN NUMBER IS PALINDROME”
ELSE
PRINT “IT IS NOT PALINDROME”
END IF
INPUT “ENTER A NUMBER”; N
S = N
WHILE N <> 0
A = N MOD 10
R = R * 10 + A
N = FIX(N / 10)
WEND
IF S = R THEN
PRINT “THE GIVEN NUMBER IS PALINDROME”
ELSE
PRINT “IT IS NOT PALINDROME”
END IF
Using Declare Sub Procedure
DECLARE SUB A (N)
CLS
INPUT “ENTER A NUMBER”; N
CALL A(N)
END
SUB A (N)
S = N
WHILE N <> 0
B = N MOD 10
R = R * 10 + B
N = FIX(N / 10)
WEND
IF S = R THEN
PRINT “IT IS PALINDROME”
ELSE
PRINT “IT IS NOT PALINDROME”
END IF
END SUB
CLS
INPUT “ENTER A NUMBER”; N
CALL A(N)
END
SUB A (N)
S = N
WHILE N <> 0
B = N MOD 10
R = R * 10 + B
N = FIX(N / 10)
WEND
IF S = R THEN
PRINT “IT IS PALINDROME”
ELSE
PRINT “IT IS NOT PALINDROME”
END IF
END SUB
CLS
INPUT “ENTER A STRING”; S$
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
IF S$ = REV$ THEN
PRINT “THE GIVEN STRING IS PALINDROME”
ELSE
PRINT “IT IS NOT PALINDROME”
END IF
INPUT “ENTER A STRING”; S$
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
IF S$ = REV$ THEN
PRINT “THE GIVEN STRING IS PALINDROME”
ELSE
PRINT “IT IS NOT PALINDROME”
END IF
Using declare sub
DECLARE SUB A(S$)
CLS
INPUT “ENTER A STRING”; S$
CALL A(S$)
END
SUB A(S$)
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
IF S$ = REV$ THEN
PRINT “THE GIVEN STRING IS PALINDROME”
ELSE
PRINT “IT IS NOT PALINDROME”
END IF
END SUB
CLS
INPUT “ENTER A STRING”; S$
CALL A(S$)
END
SUB A(S$)
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
IF S$ = REV$ THEN
PRINT “THE GIVEN STRING IS PALINDROME”
ELSE
PRINT “IT IS NOT PALINDROME”
END IF
END SUB
CLS
INPUT “ENTER A NUMBER”; N
S = N
WHILE N <> 0
A = N MOD 10
R = R + A ^ 3
N = FIX(N / 10)
WEND
IF S = R THEN
PRINT “THE GIVEN NUMBER IS ARMSTRONG”
ELSE
PRINT “IT IS NOT ARMSTRONG”
END IF
INPUT “ENTER A NUMBER”; N
S = N
WHILE N <> 0
A = N MOD 10
R = R + A ^ 3
N = FIX(N / 10)
WEND
IF S = R THEN
PRINT “THE GIVEN NUMBER IS ARMSTRONG”
ELSE
PRINT “IT IS NOT ARMSTRONG”
END IF
Using declare sub procedure
DECLARE SUB A(N)
CLS
INPUT “ENTER A NUMBER”; N
CALL A(N)
END
SUB A(N)
S=N
WHILE N <> 0
B = N MOD 10
R = R + B ^ 3
N = FIX(N / 10)
WEND
IF S = R THEN
PRINT “THE GIVEN NUMBER IS ARMSTRONG”
ELSE
PRINT “IT IS NOT ARMSTRONG”
END IF
END SUB
CLS
INPUT “ENTER A NUMBER”; N
CALL A(N)
END
SUB A(N)
S=N
WHILE N <> 0
B = N MOD 10
R = R + B ^ 3
N = FIX(N / 10)
WEND
IF S = R THEN
PRINT “THE GIVEN NUMBER IS ARMSTRONG”
ELSE
PRINT “IT IS NOT ARMSTRONG”
END IF
END SUB
CLS
INPUT “ENTER A NUMBER”; N
WHILE N <> 0
A = N MOD 10
R = R * 10 + A
N = FIX(N / 10)
WEND
PRINT R
END
INPUT “ENTER A NUMBER”; N
WHILE N <> 0
A = N MOD 10
R = R * 10 + A
N = FIX(N / 10)
WEND
PRINT R
END
Using
declare sub procedure
DECLARE SUB A(N)
CLS
INPUT “ENTER A NUMBER”; N
CALL A(N)
END
SUB A(N)
WHILE N <> 0
B = N MOD 10
R = R * 10 + B
N = FIX(N / 10)
WEND
PRINT R
END SUB
CLS
INPUT “ENTER A NUMBER”; N
CALL A(N)
END
SUB A(N)
WHILE N <> 0
B = N MOD 10
R = R * 10 + B
N = FIX(N / 10)
WEND
PRINT R
END SUB
Using
declare function procedure
DECLARE FUNCTION A(N)
CLS
INPUT “ENTER A NUMBER”; N
PRINT A(N)
END
FUNCTION A(N)
WHILE N <> 0
B = N MOD 10
R = R * 10 + B
N = FIX(N / 10)
WEND
A=R
END FUNCTION
CLS
INPUT “ENTER A NUMBER”; N
PRINT A(N)
END
FUNCTION A(N)
WHILE N <> 0
B = N MOD 10
R = R * 10 + B
N = FIX(N / 10)
WEND
A=R
END FUNCTION
‘THIS PROGRAM CONVERTS DECIMAL
NUMBER INTO HEXADECIMAL
CLS
INPUT “ENTER A DECIMAL VALUE”; N
WHILE N <> 0
K = N MOD 16
IF K = 10 THEN
B$ = “A”
ELSEIF K = 11 THEN
B$ = “B”
ELSEIF K = 12 THEN
B$ = “C”
ELSEIF K = 13 THEN
B$ = “D”
ELSEIF K = 14 THEN
B$ = “E”
ELSEIF K = 15 THEN
B$ = “F”
ELSE
B$ = STR$(K)
END IF
H$ = B$ + H$
N = FIX(N / 16)
WEND
PRINT “HEXADECIMAL VALUE IS “; H$
END
CLS
INPUT “ENTER A DECIMAL VALUE”; N
WHILE N <> 0
K = N MOD 16
IF K = 10 THEN
B$ = “A”
ELSEIF K = 11 THEN
B$ = “B”
ELSEIF K = 12 THEN
B$ = “C”
ELSEIF K = 13 THEN
B$ = “D”
ELSEIF K = 14 THEN
B$ = “E”
ELSEIF K = 15 THEN
B$ = “F”
ELSE
B$ = STR$(K)
END IF
H$ = B$ + H$
N = FIX(N / 16)
WEND
PRINT “HEXADECIMAL VALUE IS “; H$
END
Using declare function procedure
‘THIS PROGRAM CONVERTS DECIMAL
NUMBER INTO HEXADECIMAL
DECLARE FUNCTION Z$ (N)
CLS
INPUT “ENTER A DECIMAL VALUE”; N
PRINT “HEXADECIMAL VALUE IS “; Z$(N)
END
DECLARE FUNCTION Z$ (N)
CLS
INPUT “ENTER A DECIMAL VALUE”; N
PRINT “HEXADECIMAL VALUE IS “; Z$(N)
END
FUNCTION Z$ (N)
WHILE N <> 0
K = N MOD 16
IF K = 10 THEN
B$ = “A”
ELSEIF K = 11 THEN
B$ = “B”
ELSEIF K = 12 THEN
B$ = “C”
ELSEIF K = 13 THEN
B$ = “D”
ELSEIF K = 14 THEN
B$ = “E”
ELSEIF K = 15 THEN
B$ = “F”
ELSE
B$ = STR$(K)
END IF
H$ = B$ + H$
N = FIX(N / 16)
WEND
Z$ = H$
END FUNCTION
WHILE N <> 0
K = N MOD 16
IF K = 10 THEN
B$ = “A”
ELSEIF K = 11 THEN
B$ = “B”
ELSEIF K = 12 THEN
B$ = “C”
ELSEIF K = 13 THEN
B$ = “D”
ELSEIF K = 14 THEN
B$ = “E”
ELSEIF K = 15 THEN
B$ = “F”
ELSE
B$ = STR$(K)
END IF
H$ = B$ + H$
N = FIX(N / 16)
WEND
Z$ = H$
END FUNCTION
Using declare sub procedure
‘THIS PROGRAM CONVERTS DECIMAL
NUMBER INTO HEXADECIMAL
DECLARE SUB Z (N)
CLS
INPUT “ENTER A DECIMAL VALUE”; N
CALL Z(N)
END
DECLARE SUB Z (N)
CLS
INPUT “ENTER A DECIMAL VALUE”; N
CALL Z(N)
END
SUB Z (N)
WHILE N <> 0
K = N MOD 16
IF K = 10 THEN
B$ = “A”
ELSEIF K = 11 THEN
B$ = “B”
ELSEIF K = 12 THEN
B$ = “C”
ELSEIF K = 13 THEN
B$ = “D”
ELSEIF K = 14 THEN
B$ = “E”
ELSEIF K = 15 THEN
B$ = “F”
ELSE
B$ = STR$(K)
END IF
H$ = B$ + H$
N = FIX(N / 16)
WEND
PRINT “HEXADECIMAL VALUE IS “; H$
END SUB
WHILE N <> 0
K = N MOD 16
IF K = 10 THEN
B$ = “A”
ELSEIF K = 11 THEN
B$ = “B”
ELSEIF K = 12 THEN
B$ = “C”
ELSEIF K = 13 THEN
B$ = “D”
ELSEIF K = 14 THEN
B$ = “E”
ELSEIF K = 15 THEN
B$ = “F”
ELSE
B$ = STR$(K)
END IF
H$ = B$ + H$
N = FIX(N / 16)
WEND
PRINT “HEXADECIMAL VALUE IS “; H$
END SUB
‘THIS PROGRAM CONVERTS DECIMAL
NUMBER TO Octal
CLS
INPUT “ENTER A NUMBER”; N
WHILE N <> 0
A = N MOD 8
B$ = STR$(A)
N = FIX(N /
C$ = B$ + C$
WEND
PRINT “QUAINARY EQUIVALENT IS”; C$
END
CLS
INPUT “ENTER A NUMBER”; N
WHILE N <> 0
A = N MOD 8
B$ = STR$(A)
N = FIX(N /
C$ = B$ + C$
WEND
PRINT “QUAINARY EQUIVALENT IS”; C$
END
Using declare sub procedure
‘THIS PROGRAM CONVERTS DECIMAL
NUMBER TO Octal
DECLARE SUB O(N)
CLS
INPUT “ENTER A NUMBER”; N
CALL O(N)
END
SUB O(N)
WHILE N <> 0
A = N MOD 8
B$ = STR$(A)
N = FIX(N /
C$ = B$ + C$
WEND
PRINT “QUAINARY EQUIVALENT IS”; C$
END SUB
DECLARE SUB O(N)
CLS
INPUT “ENTER A NUMBER”; N
CALL O(N)
END
SUB O(N)
WHILE N <> 0
A = N MOD 8
B$ = STR$(A)
N = FIX(N /
C$ = B$ + C$
WEND
PRINT “QUAINARY EQUIVALENT IS”; C$
END SUB
Using declare function procedure
‘THIS PROGRAM CONVERTS DECIMAL
NUMBER TO Octal
DECLARE FUNCTION O$(N)
CLS
INPUT “ENTER A NUMBER”; N
PRINT “QUAINARY EQUIVALENT IS”; O$(N)
END
FUNCTION O$(N)
WHILE N <> 0
A = N MOD 8
B$ = STR$(A)
N = FIX(N /
C$ = B$ + C$
WEND
O$=C$
END FUNCTION
DECLARE FUNCTION O$(N)
CLS
INPUT “ENTER A NUMBER”; N
PRINT “QUAINARY EQUIVALENT IS”; O$(N)
END
FUNCTION O$(N)
WHILE N <> 0
A = N MOD 8
B$ = STR$(A)
N = FIX(N /
C$ = B$ + C$
WEND
O$=C$
END FUNCTION
CLS
INPUT “ENTER A STRING”; S$
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
PRINT REV$
END
INPUT “ENTER A STRING”; S$
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
PRINT REV$
END
Using declare sub procedure
DECLARE SUB A(S$)
CLS
INPUT “ENTER A STRING”; S$
CALL A(S$)
END
SUB A(S$)
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
PRINT REV$
END SUB
CLS
INPUT “ENTER A STRING”; S$
CALL A(S$)
END
SUB A(S$)
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
PRINT REV$
END SUB
Using declare function procedure
DECLARE FUNCTION A$ (S$)
CLS
INPUT “ENTER A STRING”; S$
PRINT A$(S$)
END
FUNCTION A$ (S$)
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
A$ = REV$
END FUNCTION
CLS
INPUT “ENTER A STRING”; S$
PRINT A$(S$)
END
FUNCTION A$ (S$)
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
A$ = REV$
END FUNCTION
‘THIS PROGRAM CONVERTS HEXADECIMAL
TO DECIMAL
CLS
INPUT “ENTER HEXADECIMAL VALUE”;B$
FOR I=LEN(B$) TO 1 STEP -1
A$=MID$(B$,I,1)
C=VAL(A$)
IF A$=”A” THEN C=10
IF A$=”B” THEN C=11
IF A$=”C” THEN C=12
IF A$=”D” THEN C=13
IF A$=”E” THEN C=14
IF A$=”F” THEN C=15
H=H+C*16^P
P=P+1
NEXT I
PRINT “DECIMAL VALUE IS”;H
END
CLS
INPUT “ENTER HEXADECIMAL VALUE”;B$
FOR I=LEN(B$) TO 1 STEP -1
A$=MID$(B$,I,1)
C=VAL(A$)
IF A$=”A” THEN C=10
IF A$=”B” THEN C=11
IF A$=”C” THEN C=12
IF A$=”D” THEN C=13
IF A$=”E” THEN C=14
IF A$=”F” THEN C=15
H=H+C*16^P
P=P+1
NEXT I
PRINT “DECIMAL VALUE IS”;H
END
Using declare function procedure
‘THIS PROGRAM CONVERTS HEXADECIMAL
TO DECIMAL
DECLARE FUNCTION Z(B$)
CLS
INPUT “ENTER HEXADECIMAL VALUE”;B$
PRINT “DECIMAL VALUE IS”;Z(B$)
END
FUNCTION Z(B$)
FOR I=LEN(B$) TO 1 STEP -1
A$=MID$(B$,I,1)
C=VAL(A$)
IF A$=”A” THEN C=10
IF A$=”B” THEN C=11
IF A$=”C” THEN C=12
IF A$=”D” THEN C=13
IF A$=”E” THEN C=14
IF A$=”F” THEN C=15
H=H+C*16^P
P=P+1
NEXT I
Z=H
END FUNCTION
DECLARE FUNCTION Z(B$)
CLS
INPUT “ENTER HEXADECIMAL VALUE”;B$
PRINT “DECIMAL VALUE IS”;Z(B$)
END
FUNCTION Z(B$)
FOR I=LEN(B$) TO 1 STEP -1
A$=MID$(B$,I,1)
C=VAL(A$)
IF A$=”A” THEN C=10
IF A$=”B” THEN C=11
IF A$=”C” THEN C=12
IF A$=”D” THEN C=13
IF A$=”E” THEN C=14
IF A$=”F” THEN C=15
H=H+C*16^P
P=P+1
NEXT I
Z=H
END FUNCTION
Using declare sub procedure
‘THIS PROGRAM CONVERTS HEXADECIMAL
TO DECIMAL
DECLARE SUB Z(B$)
CLS
INPUT “ENTER HEXADECIMAL VALUE”;B$
CALL Z(B$)
END
SUB Z(B$)
FOR I=LEN(B$) TO 1 STEP -1
A$=MID$(B$,I,1)
C=VAL(A$)
IF A$=”A” THEN C=10
IF A$=”B” THEN C=11
IF A$=”C” THEN C=12
IF A$=”D” THEN C=13
IF A$=”E” THEN C=14
IF A$=”F” THEN C=15
H=H+C*16^P
P=P+1
NEXT I
PRINT “DECIMAL VALUE IS”;H
END SUB
DECLARE SUB Z(B$)
CLS
INPUT “ENTER HEXADECIMAL VALUE”;B$
CALL Z(B$)
END
SUB Z(B$)
FOR I=LEN(B$) TO 1 STEP -1
A$=MID$(B$,I,1)
C=VAL(A$)
IF A$=”A” THEN C=10
IF A$=”B” THEN C=11
IF A$=”C” THEN C=12
IF A$=”D” THEN C=13
IF A$=”E” THEN C=14
IF A$=”F” THEN C=15
H=H+C*16^P
P=P+1
NEXT I
PRINT “DECIMAL VALUE IS”;H
END SUB
‘THIS PROGRAM CONVERTS DECIMAL
NUMBER TO BINARY
CLS
INPUT “ENTER A NUMBER”; N
WHILE N <> 0
A = N MOD 2
B$ = STR$(A)
N = FIX(N / 2)
C$ = B$ + C$
WEND
PRINT “BINARY EQUIVALENT IS”; C$
END
CLS
INPUT “ENTER A NUMBER”; N
WHILE N <> 0
A = N MOD 2
B$ = STR$(A)
N = FIX(N / 2)
C$ = B$ + C$
WEND
PRINT “BINARY EQUIVALENT IS”; C$
END
Using declare sub procedure
‘THIS PROGRAM CONVERTS DECIMAL
NUMBER TO BINARY
DECLARE SUB A (N)
CLS
INPUT “ENTER A NUMBER”; N
CALL A(N)
END
DECLARE SUB A (N)
CLS
INPUT “ENTER A NUMBER”; N
CALL A(N)
END
SUB A (N)
WHILE N <> 0
E = N MOD 2
B$ = STR$(E)
N = FIX(N / 2)
C$ = B$ + C$
WEND
PRINT “BINARY EQUIVALENT IS”; C$
END SUB
WHILE N <> 0
E = N MOD 2
B$ = STR$(E)
N = FIX(N / 2)
C$ = B$ + C$
WEND
PRINT “BINARY EQUIVALENT IS”; C$
END SUB
Using declare function procedure
‘THIS PROGRAM CONVERTS DECIMAL
NUMBER TO BINARY
DECLARE FUNCTION A$ (N)
CLS
INPUT “ENTER A NUMBER”; N
PRINT “BINARY EQUIVALENT IS”; A$(N)
END
DECLARE FUNCTION A$ (N)
CLS
INPUT “ENTER A NUMBER”; N
PRINT “BINARY EQUIVALENT IS”; A$(N)
END
FUNCTION A$ (N)
WHILE N <> 0
E = N MOD 2
B$ = STR$(E)
N = FIX(N / 2)
C$ = B$ + C$
WEND
A$=C$
END FUNCTION
WHILE N <> 0
E = N MOD 2
B$ = STR$(E)
N = FIX(N / 2)
C$ = B$ + C$
WEND
A$=C$
END FUNCTION
‘THIS PROGRAM CONVERTS BINARY NUMBER
TO DECIMAL
CLS
INPUT “ENTER A BINARY NUMBER”; B$
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
M = M + C * 2 ^ P
P = P + 1
NEXT I
PRINT “DECIMAL VALUE IS “; M
END
CLS
INPUT “ENTER A BINARY NUMBER”; B$
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
M = M + C * 2 ^ P
P = P + 1
NEXT I
PRINT “DECIMAL VALUE IS “; M
END
Using declare sub procedure
‘THIS PROGRAM CONVERTS BINARY NUMBER
TO DECIMAL
DECLARE SUB Z(B$)
CLS
INPUT “ENTER A BINARY NUMBER”; B$
CALL Z(B$)
END
SUB Z(B$)
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
M = M + C * 2 ^ P
P = P + 1
NEXT I
PRINT “DECIMAL VALUE IS “; M
END SUB
DECLARE SUB Z(B$)
CLS
INPUT “ENTER A BINARY NUMBER”; B$
CALL Z(B$)
END
SUB Z(B$)
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
M = M + C * 2 ^ P
P = P + 1
NEXT I
PRINT “DECIMAL VALUE IS “; M
END SUB
Using declare function procedure
‘THIS PROGRAM CONVERTS BINARY NUMBER
TO DECIMAL
DECLARE FUNCTION Z (B$)
CLS
INPUT “ENTER A BINARY NUMBER”; B$
PRINT “DECIMAL VALUE IS “; Z(B$)
END
DECLARE FUNCTION Z (B$)
CLS
INPUT “ENTER A BINARY NUMBER”; B$
PRINT “DECIMAL VALUE IS “; Z(B$)
END
FUNCTION Z (B$)
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
M = M + C * 2 ^ P
P = P + 1
NEXT I
Z = M
END FUNCTION
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
M = M + C * 2 ^ P
P = P + 1
NEXT I
Z = M
END FUNCTION
‘THIS PROGRAM CONVERTS OCTAL TO
DECIMAL
CLS
INPUT “ENTER A OCTAL VALUE”; B$
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
D = D + C * 8 ^ P
P = P + 1
NEXT I
PRINT “DECIMAL VALUE IS”; D
END
CLS
INPUT “ENTER A OCTAL VALUE”; B$
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
D = D + C * 8 ^ P
P = P + 1
NEXT I
PRINT “DECIMAL VALUE IS”; D
END
Using declare function procedure
‘THIS PROGRAM CONVERTS OCTAL TO
DECIMAL
DECLARE FUNCTION Z (B$)
CLS
INPUT “ENTER A OCTAL VALUE”; B$
PRINT “DECIMAL VALUE IS”; Z(B$)
END
DECLARE FUNCTION Z (B$)
CLS
INPUT “ENTER A OCTAL VALUE”; B$
PRINT “DECIMAL VALUE IS”; Z(B$)
END
FUNCTION Z (B$)
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
D = D + C * 8 ^ P
P = P + 1
NEXT I
Z = D
END FUNCTION
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
D = D + C * 8 ^ P
P = P + 1
NEXT I
Z = D
END FUNCTION
Using declare sub procedure
‘THIS PROGRAM CONVERTS OCTAL TO
DECIMAL
DECLARE SUB Z(B$)
CLS
INPUT “ENTER A OCTAL VALUE”; B$
CALL Z(B$)
END
SUB Z(B$)
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
D = D + C * 8 ^ P
P = P + 1
NEXT I
PRINT “DECIMAL VALUE IS”; D
END SUB
DECLARE SUB Z(B$)
CLS
INPUT “ENTER A OCTAL VALUE”; B$
CALL Z(B$)
END
SUB Z(B$)
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
D = D + C * 8 ^ P
P = P + 1
NEXT I
PRINT “DECIMAL VALUE IS”; D
END SUB
CLS
R = 1
INPUT “ENTER A NUMBER”;N
WHILE N<>0
A = N MOD 10
R = R * A
N = FIX ( N / 10 )
WEND
PRINT “PRODUCT OF DIGITS IS”;R
END
R = 1
INPUT “ENTER A NUMBER”;N
WHILE N<>0
A = N MOD 10
R = R * A
N = FIX ( N / 10 )
WEND
PRINT “PRODUCT OF DIGITS IS”;R
END
Using declare sub procedure
DECLARE SUB C(N)
CLS
INPUT “ENTER A NUMBER”;N
CALL C(N)
END
SUB C(N)
R = 1
WHILE N<>0
A = N MOD 10
R = R * A
N = FIX ( N / 10 )
WEND
PRINT “PRODUCT OF DIGITS IS”;R
END SUB
CLS
INPUT “ENTER A NUMBER”;N
CALL C(N)
END
SUB C(N)
R = 1
WHILE N<>0
A = N MOD 10
R = R * A
N = FIX ( N / 10 )
WEND
PRINT “PRODUCT OF DIGITS IS”;R
END SUB
Using declare function procedure
DECLARE FUNCTION C(N)
CLS
INPUT “ENTER A NUMBER”;N
PRINT “PRODUCT OF DIGITS IS”;C(N)
END
FUNCTION C(N)
R = 1
WHILE N<>0
A = N MOD 10
R = R * A
N = FIX ( N / 10 )
WEND
C = R
END FUNCTION
CLS
INPUT “ENTER A NUMBER”;N
PRINT “PRODUCT OF DIGITS IS”;C(N)
END
FUNCTION C(N)
R = 1
WHILE N<>0
A = N MOD 10
R = R * A
N = FIX ( N / 10 )
WEND
C = R
END FUNCTION
CLS
INPUT “ENTER A NUMBER”;N
WHILE N<>0
A = N MOD 10
R = R + A
N = FIX ( N / 10 )
WEND
PRINT “SUM OF DIGITS IS”;R
END
INPUT “ENTER A NUMBER”;N
WHILE N<>0
A = N MOD 10
R = R + A
N = FIX ( N / 10 )
WEND
PRINT “SUM OF DIGITS IS”;R
END
Using declare function procedure
DECLARE FUNCTION C(N)
CLS
INPUT “ENTER A NUMBER”;N
PRINT “SUM OF DIGITS IS”;C(N)
END
FUNCTION C(N)
WHILE N<>0
A = N MOD 10
R = R + A
N = FIX ( N / 10 )
WEND
C = R
END FUNCTION
CLS
INPUT “ENTER A NUMBER”;N
PRINT “SUM OF DIGITS IS”;C(N)
END
FUNCTION C(N)
WHILE N<>0
A = N MOD 10
R = R + A
N = FIX ( N / 10 )
WEND
C = R
END FUNCTION
Using declare sub procedure
DECLARE SUB C(N)
CLS
INPUT “ENTER A NUMBER”;N
CALL C(N)
END
SUB C(N)
WHILE N<>0
A = N MOD 10
R = R + A
N = FIX ( N / 10 )
WEND
PRINT “SUM OF DIGITS IS”;R
END SUB
CLS
INPUT “ENTER A NUMBER”;N
CALL C(N)
END
SUB C(N)
WHILE N<>0
A = N MOD 10
R = R + A
N = FIX ( N / 10 )
WEND
PRINT “SUM OF DIGITS IS”;R
END SUB
Program
to print fibonacci series in Qbasic
Write a program in Qbasic to print
the fibonacci series up to tenth term. Using loops-FOR…NEXT & WHILE…WEND
Fibonacci series is the series in which the next number is obtained by the sum
of two number just front of it. The first two numbers are explained by the
user.It can be obtained up to any term.Here, I am only doing of tenth term.You
can change the number of output to any term just by changing the looping
number.Here is example of a fibonacci series. suppose you entered the first two
numbers-1 & 2 and upto the tenth term then your output will be as:
1,2,3,5,8,13,21,34,55,89
Here in the begining 1 & 2 are the entered numbers.3 is the product of 1 & 2 as the definition of fibonacci series given in first.like wise 5 is the sum of 2 & 3 and 8 is the sum of 3 & 5 and so on.
Using FOR…NEXT
1,2,3,5,8,13,21,34,55,89
Here in the begining 1 & 2 are the entered numbers.3 is the product of 1 & 2 as the definition of fibonacci series given in first.like wise 5 is the sum of 2 & 3 and 8 is the sum of 3 & 5 and so on.
Using FOR…NEXT
CLS
A = 1
B = 2
PRINT A
PRINT B
FOR I = 1 TO 10
C = A + B
PRINT C
A = B
B = C
NEXT I
END
A = 1
B = 2
PRINT A
PRINT B
FOR I = 1 TO 10
C = A + B
PRINT C
A = B
B = C
NEXT I
END
Using WHILE…WEND
CLS
I = 1
A = 1
B = 2
PRINT A
PRINT B
WHILE I < = 10
C = A + B
PRINT C
A = B
B = C
I = I + 1
WEND
END
I = 1
A = 1
B = 2
PRINT A
PRINT B
WHILE I < = 10
C = A + B
PRINT C
A = B
B = C
I = I + 1
WEND
END
Using declare sub procedure
Using FOR…NEXT
DECLARE SUB FIB ()
CLS
CALL FIB
END
SUB FIB
A = 1
B = 2
PRINT A
PRINT B
FOR I = 1 TO 10
C = A + B
PRINT C
A = B
B = C
NEXT I
END SUB
CLS
CALL FIB
END
SUB FIB
A = 1
B = 2
PRINT A
PRINT B
FOR I = 1 TO 10
C = A + B
PRINT C
A = B
B = C
NEXT I
END SUB
Using WHILE…WEND
DECLARE SUB FIB ()
CLS
CALL FIB
END
SUB FIB
I = 1
A = 1
B = 2
PRINT A
PRINT B
WHILE I < = 10
C = A + B
PRINT C
A = B
B = C
I = I + 1
WEND
END SUB
CLS
CALL FIB
END
SUB FIB
I = 1
A = 1
B = 2
PRINT A
PRINT B
WHILE I < = 10
C = A + B
PRINT C
A = B
B = C
I = I + 1
WEND
END SUB
‘PROGRAM TO CHECK WHETHER A GIVEN
NUMBER IS PRIME OR COMPOSITE
CLS
INPUT “ENTER A NUMBER”;N
FOR I = 2 TO N/2
IF N MOD I = 0 THEN
C = C+2
END IF
NEXT I
IF C>0 THEN
PRINT “IT IS COMPOSITE”
ELSE
PRINT “IT IS PRIME”
END IF
END
CLS
INPUT “ENTER A NUMBER”;N
FOR I = 2 TO N/2
IF N MOD I = 0 THEN
C = C+2
END IF
NEXT I
IF C>0 THEN
PRINT “IT IS COMPOSITE”
ELSE
PRINT “IT IS PRIME”
END IF
END
Using declare sub procedure
‘CHECK WHETHER A GIVEN NUMBER IS
PRIME OR COMPOSITE
DECLARE SUB A(N)
CLS
INPUT “ENTER A NUMBER”;N
CALL A(N)
END
DECLARE SUB A(N)
CLS
INPUT “ENTER A NUMBER”;N
CALL A(N)
END
SUB A(N)
FOR I = 2 TO N/2
IF N MOD I = 0 THEN
C = C+2
END IF
NEXT I
IF C>0 THEN
PRINT “IT IS COMPOSITE”
ELSE
? “IT IS PRIME”
END IF
END SUB
FOR I = 2 TO N/2
IF N MOD I = 0 THEN
C = C+2
END IF
NEXT I
IF C>0 THEN
PRINT “IT IS COMPOSITE”
ELSE
? “IT IS PRIME”
END IF
END SUB
Using declare function procedure
‘PROGRAM TO CHECK WHETHER A GIVEN
NUMBER IS PRIME OR COMPOSITE
DECLARE FUNCTION AB (N)
CLS
INPUT “ENTER A NUMBER”; N
IF AB(N) > 0 THEN
PRINT “IT IS COMPOSITE”
ELSE
PRINT “IT IS PRIME”
END IF
END
DECLARE FUNCTION AB (N)
CLS
INPUT “ENTER A NUMBER”; N
IF AB(N) > 0 THEN
PRINT “IT IS COMPOSITE”
ELSE
PRINT “IT IS PRIME”
END IF
END
FUNCTION AB (N)
FOR I = 2 TO N / 2
IF N MOD I = 0 THEN
C = C + 2
END IF
NEXT I
AB = C
END FUNCTION
FOR I = 2 TO N / 2
IF N MOD I = 0 THEN
C = C + 2
END IF
NEXT I
AB = C
END FUNCTION
REM PROGRAM TO CHECK
ENTERED NUMBER IS UPPERCASE OR LOWERCASE
CLS
INPUT “Enter a letter”;A$
U$=UCASE$(A$)
IF U$=A$ THEN
PRINT “It is capital letter”
ELSE
PRINT “It is small letter”
ENDIF
END
CLS
INPUT “Enter a letter”;A$
U$=UCASE$(A$)
IF U$=A$ THEN
PRINT “It is capital letter”
ELSE
PRINT “It is small letter”
ENDIF
END
USING DECLARE FUNCTION PROCEDURE
DECLARE FUNCTION UC$
(A$)
CLS
INPUT “Enter a letter”; A$
PRINT UC$(A$)
END
CLS
INPUT “Enter a letter”; A$
PRINT UC$(A$)
END
FUNCTION UC$ (A$)
CH$ = UCASE$(A$)
IF A$ = CH$ THEN
UC$ = “It is capital letter”
ELSE
UC$ = “It is small letter”
END IF
END FUNCTION
CH$ = UCASE$(A$)
IF A$ = CH$ THEN
UC$ = “It is capital letter”
ELSE
UC$ = “It is small letter”
END IF
END FUNCTION
USING DECLARE SUB PROCEDURE
DECLARE SUB UC(A$)
CLS
INPUT “Enter a letter”; A$
CALL UC(A$)
END
CLS
INPUT “Enter a letter”; A$
CALL UC(A$)
END
SUB UC(A$)
CH$ = UCASE$(A$)
IF A$ = CH$ THEN
PRINT “It is capital letter”
ELSE
PRINT “It is small letter”
END IF
END SUB
CH$ = UCASE$(A$)
IF A$ = CH$ THEN
PRINT “It is capital letter”
ELSE
PRINT “It is small letter”
END IF
END SUB
Program
to check a given number is palindrome or not in qbasic
CLS
INPUT “ENTER A NUMBER”; N
S = N
WHILE N <> 0
A = N MOD 10
R = R * 10 + A
N = FIX(N / 10)
WEND
IF S = R THEN
PRINT “THE GIVEN NUMBER IS PALINDROME”
ELSE
PRINT “IT IS NOT PALINDROME”
END IF
INPUT “ENTER A NUMBER”; N
S = N
WHILE N <> 0
A = N MOD 10
R = R * 10 + A
N = FIX(N / 10)
WEND
IF S = R THEN
PRINT “THE GIVEN NUMBER IS PALINDROME”
ELSE
PRINT “IT IS NOT PALINDROME”
END IF
Using Declare Sub Procedure
DECLARE SUB A (N)
CLS
INPUT “ENTER A NUMBER”; N
CALL A(N)
END
SUB A (N)
S = N
WHILE N <> 0
B = N MOD 10
R = R * 10 + B
N = FIX(N / 10)
WEND
IF S = R THEN
PRINT “IT IS PALINDROME”
ELSE
PRINT “IT IS NOT PALINDROME”
END IF
END SUB
CLS
INPUT “ENTER A NUMBER”; N
CALL A(N)
END
SUB A (N)
S = N
WHILE N <> 0
B = N MOD 10
R = R * 10 + B
N = FIX(N / 10)
WEND
IF S = R THEN
PRINT “IT IS PALINDROME”
ELSE
PRINT “IT IS NOT PALINDROME”
END IF
END SUB
Program
to check a given string is palindrome or not in qbasic
CLS
INPUT “ENTER A STRING”; S$
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
IF S$ = REV$ THEN
PRINT “THE GIVEN STRING IS PALINDROME”
ELSE
PRINT “IT IS NOT PALINDROME”
END IF
INPUT “ENTER A STRING”; S$
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
IF S$ = REV$ THEN
PRINT “THE GIVEN STRING IS PALINDROME”
ELSE
PRINT “IT IS NOT PALINDROME”
END IF
Using declare sub
DECLARE SUB A(S$)
CLS
INPUT “ENTER A STRING”; S$
CALL A(S$)
END
SUB A(S$)
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
IF S$ = REV$ THEN
PRINT “THE GIVEN STRING IS PALINDROME”
ELSE
PRINT “IT IS NOT PALINDROME”
END IF
END SUB
CLS
INPUT “ENTER A STRING”; S$
CALL A(S$)
END
SUB A(S$)
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
IF S$ = REV$ THEN
PRINT “THE GIVEN STRING IS PALINDROME”
ELSE
PRINT “IT IS NOT PALINDROME”
END IF
END SUB
Program
to check given number is armstrong or not in qbasic
CLS
INPUT “ENTER A NUMBER”; N
S = N
WHILE N <> 0
A = N MOD 10
R = R + A ^ 3
N = FIX(N / 10)
WEND
IF S = R THEN
PRINT “THE GIVEN NUMBER IS ARMSTRONG”
ELSE
PRINT “IT IS NOT ARMSTRONG”
END IF
INPUT “ENTER A NUMBER”; N
S = N
WHILE N <> 0
A = N MOD 10
R = R + A ^ 3
N = FIX(N / 10)
WEND
IF S = R THEN
PRINT “THE GIVEN NUMBER IS ARMSTRONG”
ELSE
PRINT “IT IS NOT ARMSTRONG”
END IF
Using declare sub procedure
DECLARE SUB A(N)
CLS
INPUT “ENTER A NUMBER”; N
CALL A(N)
END
SUB A(N)
S=N
WHILE N <> 0
B = N MOD 10
R = R + B ^ 3
N = FIX(N / 10)
WEND
IF S = R THEN
PRINT “THE GIVEN NUMBER IS ARMSTRONG”
ELSE
PRINT “IT IS NOT ARMSTRONG”
END IF
END SUB
CLS
INPUT “ENTER A NUMBER”; N
CALL A(N)
END
SUB A(N)
S=N
WHILE N <> 0
B = N MOD 10
R = R + B ^ 3
N = FIX(N / 10)
WEND
IF S = R THEN
PRINT “THE GIVEN NUMBER IS ARMSTRONG”
ELSE
PRINT “IT IS NOT ARMSTRONG”
END IF
END SUB
Program
to reverse a given number in qbasic
CLS
INPUT “ENTER A NUMBER”; N
WHILE N <> 0
A = N MOD 10
R = R * 10 + A
N = FIX(N / 10)
WEND
PRINT R
END
INPUT “ENTER A NUMBER”; N
WHILE N <> 0
A = N MOD 10
R = R * 10 + A
N = FIX(N / 10)
WEND
PRINT R
END
Using declare sub procedure
DECLARE SUB A(N)
CLS
INPUT “ENTER A NUMBER”; N
CALL A(N)
END
SUB A(N)
WHILE N <> 0
B = N MOD 10
R = R * 10 + B
N = FIX(N / 10)
WEND
PRINT R
END SUB
CLS
INPUT “ENTER A NUMBER”; N
CALL A(N)
END
SUB A(N)
WHILE N <> 0
B = N MOD 10
R = R * 10 + B
N = FIX(N / 10)
WEND
PRINT R
END SUB
Using declare function procedure
DECLARE FUNCTION A(N)
CLS
INPUT “ENTER A NUMBER”; N
PRINT A(N)
END
FUNCTION A(N)
WHILE N <> 0
B = N MOD 10
R = R * 10 + B
N = FIX(N / 10)
WEND
A=R
END FUNCTION
CLS
INPUT “ENTER A NUMBER”; N
PRINT A(N)
END
FUNCTION A(N)
WHILE N <> 0
B = N MOD 10
R = R * 10 + B
N = FIX(N / 10)
WEND
A=R
END FUNCTION
Program
to convert decimal to hexadecimal in qbasic
‘THIS PROGRAM
CONVERTS DECIMAL NUMBER INTO HEXADECIMAL
CLS
INPUT “ENTER A DECIMAL VALUE”; N
WHILE N <> 0
K = N MOD 16
IF K = 10 THEN
B$ = “A”
ELSEIF K = 11 THEN
B$ = “B”
ELSEIF K = 12 THEN
B$ = “C”
ELSEIF K = 13 THEN
B$ = “D”
ELSEIF K = 14 THEN
B$ = “E”
ELSEIF K = 15 THEN
B$ = “F”
ELSE
B$ = STR$(K)
END IF
H$ = B$ + H$
N = FIX(N / 16)
WEND
PRINT “HEXADECIMAL VALUE IS “; H$
END
CLS
INPUT “ENTER A DECIMAL VALUE”; N
WHILE N <> 0
K = N MOD 16
IF K = 10 THEN
B$ = “A”
ELSEIF K = 11 THEN
B$ = “B”
ELSEIF K = 12 THEN
B$ = “C”
ELSEIF K = 13 THEN
B$ = “D”
ELSEIF K = 14 THEN
B$ = “E”
ELSEIF K = 15 THEN
B$ = “F”
ELSE
B$ = STR$(K)
END IF
H$ = B$ + H$
N = FIX(N / 16)
WEND
PRINT “HEXADECIMAL VALUE IS “; H$
END
Using declare function procedure
‘THIS PROGRAM CONVERTS
DECIMAL NUMBER INTO HEXADECIMAL
DECLARE FUNCTION Z$ (N)
CLS
INPUT “ENTER A DECIMAL VALUE”; N
PRINT “HEXADECIMAL VALUE IS “; Z$(N)
END
DECLARE FUNCTION Z$ (N)
CLS
INPUT “ENTER A DECIMAL VALUE”; N
PRINT “HEXADECIMAL VALUE IS “; Z$(N)
END
FUNCTION Z$ (N)
WHILE N <> 0
K = N MOD 16
IF K = 10 THEN
B$ = “A”
ELSEIF K = 11 THEN
B$ = “B”
ELSEIF K = 12 THEN
B$ = “C”
ELSEIF K = 13 THEN
B$ = “D”
ELSEIF K = 14 THEN
B$ = “E”
ELSEIF K = 15 THEN
B$ = “F”
ELSE
B$ = STR$(K)
END IF
H$ = B$ + H$
N = FIX(N / 16)
WEND
Z$ = H$
END FUNCTION
WHILE N <> 0
K = N MOD 16
IF K = 10 THEN
B$ = “A”
ELSEIF K = 11 THEN
B$ = “B”
ELSEIF K = 12 THEN
B$ = “C”
ELSEIF K = 13 THEN
B$ = “D”
ELSEIF K = 14 THEN
B$ = “E”
ELSEIF K = 15 THEN
B$ = “F”
ELSE
B$ = STR$(K)
END IF
H$ = B$ + H$
N = FIX(N / 16)
WEND
Z$ = H$
END FUNCTION
Using declare sub procedure
‘THIS PROGRAM
CONVERTS DECIMAL NUMBER INTO HEXADECIMAL
DECLARE SUB Z (N)
CLS
INPUT “ENTER A DECIMAL VALUE”; N
CALL Z(N)
END
DECLARE SUB Z (N)
CLS
INPUT “ENTER A DECIMAL VALUE”; N
CALL Z(N)
END
SUB Z (N)
WHILE N <> 0
K = N MOD 16
IF K = 10 THEN
B$ = “A”
ELSEIF K = 11 THEN
B$ = “B”
ELSEIF K = 12 THEN
B$ = “C”
ELSEIF K = 13 THEN
B$ = “D”
ELSEIF K = 14 THEN
B$ = “E”
ELSEIF K = 15 THEN
B$ = “F”
ELSE
B$ = STR$(K)
END IF
H$ = B$ + H$
N = FIX(N / 16)
WEND
PRINT “HEXADECIMAL VALUE IS “; H$
END SUB
WHILE N <> 0
K = N MOD 16
IF K = 10 THEN
B$ = “A”
ELSEIF K = 11 THEN
B$ = “B”
ELSEIF K = 12 THEN
B$ = “C”
ELSEIF K = 13 THEN
B$ = “D”
ELSEIF K = 14 THEN
B$ = “E”
ELSEIF K = 15 THEN
B$ = “F”
ELSE
B$ = STR$(K)
END IF
H$ = B$ + H$
N = FIX(N / 16)
WEND
PRINT “HEXADECIMAL VALUE IS “; H$
END SUB
Program
to convert decimal to octal in qbasic
‘THIS PROGRAM
CONVERTS DECIMAL NUMBER TO Octal
CLS
INPUT “ENTER A NUMBER”; N
WHILE N <> 0
A = N MOD 8
B$ = STR$(A)
N = FIX(N / 8)
C$ = B$ + C$
WEND
PRINT “QUAINARY EQUIVALENT IS”; C$
END
CLS
INPUT “ENTER A NUMBER”; N
WHILE N <> 0
A = N MOD 8
B$ = STR$(A)
N = FIX(N / 8)
C$ = B$ + C$
WEND
PRINT “QUAINARY EQUIVALENT IS”; C$
END
Using declare sub procedure
‘THIS PROGRAM
CONVERTS DECIMAL NUMBER TO Octal
DECLARE SUB O(N)
CLS
INPUT “ENTER A NUMBER”; N
CALL O(N)
END
SUB O(N)
WHILE N <> 0
A = N MOD 8
B$ = STR$(A)
N = FIX(N / 8)
C$ = B$ + C$
WEND
PRINT “QUAINARY EQUIVALENT IS”; C$
END SUB
DECLARE SUB O(N)
CLS
INPUT “ENTER A NUMBER”; N
CALL O(N)
END
SUB O(N)
WHILE N <> 0
A = N MOD 8
B$ = STR$(A)
N = FIX(N / 8)
C$ = B$ + C$
WEND
PRINT “QUAINARY EQUIVALENT IS”; C$
END SUB
Using declare function procedure
‘THIS PROGRAM
CONVERTS DECIMAL NUMBER TO Octal
DECLARE FUNCTION O$(N)
CLS
INPUT “ENTER A NUMBER”; N
PRINT “QUAINARY EQUIVALENT IS”; O$(N)
END
FUNCTION O$(N)
WHILE N <> 0
A = N MOD 8
B$ = STR$(A)
N = FIX(N / 8)
C$ = B$ + C$
WEND
O$=C$
END FUNCTION
DECLARE FUNCTION O$(N)
CLS
INPUT “ENTER A NUMBER”; N
PRINT “QUAINARY EQUIVALENT IS”; O$(N)
END
FUNCTION O$(N)
WHILE N <> 0
A = N MOD 8
B$ = STR$(A)
N = FIX(N / 8)
C$ = B$ + C$
WEND
O$=C$
END FUNCTION
Program
to reverse a given string in qbasic
CLS
INPUT “ENTER A STRING”; S$
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
PRINT REV$
END
INPUT “ENTER A STRING”; S$
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
PRINT REV$
END
Using declare sub procedure
DECLARE SUB A(S$)
CLS
INPUT “ENTER A STRING”; S$
CALL A(S$)
END
SUB A(S$)
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
PRINT REV$
END SUB
CLS
INPUT “ENTER A STRING”; S$
CALL A(S$)
END
SUB A(S$)
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
PRINT REV$
END SUB
Using declare function procedure
DECLARE FUNCTION A$
(S$)
CLS
INPUT “ENTER A STRING”; S$
PRINT A$(S$)
END
FUNCTION A$ (S$)
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
A$ = REV$
END FUNCTION
CLS
INPUT “ENTER A STRING”; S$
PRINT A$(S$)
END
FUNCTION A$ (S$)
FOR I = LEN(S$) TO 1 STEP -1
M$ = MID$(S$, I, 1)
REV$ = REV$ + M$
NEXT I
A$ = REV$
END FUNCTION
Program
to converts Hexadecimal to Decimal in Qbasic
‘THIS PROGRAM CONVERTS
HEXADECIMAL TO DECIMAL
CLS
INPUT “ENTER HEXADECIMAL VALUE”;B$
FOR I=LEN(B$) TO 1 STEP -1
A$=MID$(B$,I,1)
C=VAL(A$)
IF A$=”A” THEN C=10
IF A$=”B” THEN C=11
IF A$=”C” THEN C=12
IF A$=”D” THEN C=13
IF A$=”E” THEN C=14
IF A$=”F” THEN C=15
H=H+C*16^P
P=P+1
NEXT I
PRINT “DECIMAL VALUE IS”;H
END
CLS
INPUT “ENTER HEXADECIMAL VALUE”;B$
FOR I=LEN(B$) TO 1 STEP -1
A$=MID$(B$,I,1)
C=VAL(A$)
IF A$=”A” THEN C=10
IF A$=”B” THEN C=11
IF A$=”C” THEN C=12
IF A$=”D” THEN C=13
IF A$=”E” THEN C=14
IF A$=”F” THEN C=15
H=H+C*16^P
P=P+1
NEXT I
PRINT “DECIMAL VALUE IS”;H
END
Using declare function procedure
‘THIS PROGRAM
CONVERTS HEXADECIMAL TO DECIMAL
DECLARE FUNCTION Z(B$)
CLS
INPUT “ENTER HEXADECIMAL VALUE”;B$
PRINT “DECIMAL VALUE IS”;Z(B$)
END
FUNCTION Z(B$)
FOR I=LEN(B$) TO 1 STEP -1
A$=MID$(B$,I,1)
C=VAL(A$)
IF A$=”A” THEN C=10
IF A$=”B” THEN C=11
IF A$=”C” THEN C=12
IF A$=”D” THEN C=13
IF A$=”E” THEN C=14
IF A$=”F” THEN C=15
H=H+C*16^P
P=P+1
NEXT I
Z=H
END FUNCTION
DECLARE FUNCTION Z(B$)
CLS
INPUT “ENTER HEXADECIMAL VALUE”;B$
PRINT “DECIMAL VALUE IS”;Z(B$)
END
FUNCTION Z(B$)
FOR I=LEN(B$) TO 1 STEP -1
A$=MID$(B$,I,1)
C=VAL(A$)
IF A$=”A” THEN C=10
IF A$=”B” THEN C=11
IF A$=”C” THEN C=12
IF A$=”D” THEN C=13
IF A$=”E” THEN C=14
IF A$=”F” THEN C=15
H=H+C*16^P
P=P+1
NEXT I
Z=H
END FUNCTION
Using declare sub procedure
‘THIS PROGRAM
CONVERTS HEXADECIMAL TO DECIMAL
DECLARE SUB Z(B$)
CLS
INPUT “ENTER HEXADECIMAL VALUE”;B$
CALL Z(B$)
END
SUB Z(B$)
FOR I=LEN(B$) TO 1 STEP -1
A$=MID$(B$,I,1)
C=VAL(A$)
IF A$=”A” THEN C=10
IF A$=”B” THEN C=11
IF A$=”C” THEN C=12
IF A$=”D” THEN C=13
IF A$=”E” THEN C=14
IF A$=”F” THEN C=15
H=H+C*16^P
P=P+1
NEXT I
PRINT “DECIMAL VALUE IS”;H
END SUB
DECLARE SUB Z(B$)
CLS
INPUT “ENTER HEXADECIMAL VALUE”;B$
CALL Z(B$)
END
SUB Z(B$)
FOR I=LEN(B$) TO 1 STEP -1
A$=MID$(B$,I,1)
C=VAL(A$)
IF A$=”A” THEN C=10
IF A$=”B” THEN C=11
IF A$=”C” THEN C=12
IF A$=”D” THEN C=13
IF A$=”E” THEN C=14
IF A$=”F” THEN C=15
H=H+C*16^P
P=P+1
NEXT I
PRINT “DECIMAL VALUE IS”;H
END SUB
Program to convert decimal
to binary in qbasic
‘THIS PROGRAM
CONVERTS DECIMAL NUMBER TO BINARY
CLS
INPUT “ENTER A NUMBER”; N
WHILE N <> 0
A = N MOD 2
B$ = STR$(A)
N = FIX(N / 2)
C$ = B$ + C$
WEND
PRINT “BINARY EQUIVALENT IS”; C$
END
CLS
INPUT “ENTER A NUMBER”; N
WHILE N <> 0
A = N MOD 2
B$ = STR$(A)
N = FIX(N / 2)
C$ = B$ + C$
WEND
PRINT “BINARY EQUIVALENT IS”; C$
END
Using declare sub procedure
‘THIS PROGRAM
CONVERTS DECIMAL NUMBER TO BINARY
DECLARE SUB A (N)
CLS
INPUT “ENTER A NUMBER”; N
CALL A(N)
END
DECLARE SUB A (N)
CLS
INPUT “ENTER A NUMBER”; N
CALL A(N)
END
SUB A (N)
WHILE N <> 0
E = N MOD 2
B$ = STR$(E)
N = FIX(N / 2)
C$ = B$ + C$
WEND
PRINT “BINARY EQUIVALENT IS”; C$
END SUB
WHILE N <> 0
E = N MOD 2
B$ = STR$(E)
N = FIX(N / 2)
C$ = B$ + C$
WEND
PRINT “BINARY EQUIVALENT IS”; C$
END SUB
Using declare function procedure
‘THIS PROGRAM
CONVERTS DECIMAL NUMBER TO BINARY
DECLARE FUNCTION A$ (N)
CLS
INPUT “ENTER A NUMBER”; N
PRINT “BINARY EQUIVALENT IS”; A$(N)
END
DECLARE FUNCTION A$ (N)
CLS
INPUT “ENTER A NUMBER”; N
PRINT “BINARY EQUIVALENT IS”; A$(N)
END
FUNCTION A$ (N)
WHILE N <> 0
E = N MOD 2
B$ = STR$(E)
N = FIX(N / 2)
C$ = B$ + C$
WEND
A$=C$
END FUNCTION
WHILE N <> 0
E = N MOD 2
B$ = STR$(E)
N = FIX(N / 2)
C$ = B$ + C$
WEND
A$=C$
END FUNCTION
Program to convert Binary to
Decimal in qbasic
‘THIS PROGRAM
CONVERTS BINARY NUMBER TO DECIMAL
CLS
INPUT “ENTER A BINARY NUMBER”; B$
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
M = M + C * 2 ^ P
P = P + 1
NEXT I
PRINT “DECIMAL VALUE IS “; M
END
CLS
INPUT “ENTER A BINARY NUMBER”; B$
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
M = M + C * 2 ^ P
P = P + 1
NEXT I
PRINT “DECIMAL VALUE IS “; M
END
Using declare sub procedure
‘THIS PROGRAM
CONVERTS BINARY NUMBER TO DECIMAL
DECLARE SUB Z(B$)
CLS
INPUT “ENTER A BINARY NUMBER”; B$
CALL Z(B$)
END
SUB Z(B$)
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
M = M + C * 2 ^ P
P = P + 1
NEXT I
PRINT “DECIMAL VALUE IS “; M
END SUB
DECLARE SUB Z(B$)
CLS
INPUT “ENTER A BINARY NUMBER”; B$
CALL Z(B$)
END
SUB Z(B$)
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
M = M + C * 2 ^ P
P = P + 1
NEXT I
PRINT “DECIMAL VALUE IS “; M
END SUB
Using declare function procedure
‘THIS PROGRAM
CONVERTS BINARY NUMBER TO DECIMAL
DECLARE FUNCTION Z (B$)
CLS
INPUT “ENTER A BINARY NUMBER”; B$
PRINT “DECIMAL VALUE IS “; Z(B$)
END
DECLARE FUNCTION Z (B$)
CLS
INPUT “ENTER A BINARY NUMBER”; B$
PRINT “DECIMAL VALUE IS “; Z(B$)
END
FUNCTION Z (B$)
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
M = M + C * 2 ^ P
P = P + 1
NEXT I
Z = M
END FUNCTION
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
M = M + C * 2 ^ P
P = P + 1
NEXT I
Z = M
END FUNCTION
Program to convert Octal to
Decimal in Qbasic
‘THIS PROGRAM
CONVERTS OCTAL TO DECIMAL
CLS
INPUT “ENTER A OCTAL VALUE”; B$
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
D = D + C * 8 ^ P
P = P + 1
NEXT I
PRINT “DECIMAL VALUE IS”; D
END
CLS
INPUT “ENTER A OCTAL VALUE”; B$
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
D = D + C * 8 ^ P
P = P + 1
NEXT I
PRINT “DECIMAL VALUE IS”; D
END
Using declare function procedure
‘THIS PROGRAM
CONVERTS OCTAL TO DECIMAL
DECLARE FUNCTION Z (B$)
CLS
INPUT “ENTER A OCTAL VALUE”; B$
PRINT “DECIMAL VALUE IS”; Z(B$)
END
DECLARE FUNCTION Z (B$)
CLS
INPUT “ENTER A OCTAL VALUE”; B$
PRINT “DECIMAL VALUE IS”; Z(B$)
END
FUNCTION Z (B$)
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
D = D + C * 8 ^ P
P = P + 1
NEXT I
Z = D
END FUNCTION
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
D = D + C * 8 ^ P
P = P + 1
NEXT I
Z = D
END FUNCTION
Using declare sub procedure
‘THIS PROGRAM
CONVERTS OCTAL TO DECIMAL
DECLARE SUB Z(B$)
CLS
INPUT “ENTER A OCTAL VALUE”; B$
CALL Z(B$)
END
SUB Z(B$)
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
D = D + C * 8 ^ P
P = P + 1
NEXT I
PRINT “DECIMAL VALUE IS”; D
END SUB
DECLARE SUB Z(B$)
CLS
INPUT “ENTER A OCTAL VALUE”; B$
CALL Z(B$)
END
SUB Z(B$)
FOR I = LEN(B$) TO 1 STEP -1
A$ = MID$(B$, I, 1)
C = VAL(A$)
D = D + C * 8 ^ P
P = P + 1
NEXT I
PRINT “DECIMAL VALUE IS”; D
END SUB
Program to find the product
of the digits of the given number in Qbasic
CLS
R = 1
INPUT “ENTER A NUMBER”;N
WHILE N<>0
A = N MOD 10
R = R * A
N = FIX ( N / 10 )
WEND
PRINT “PRODUCT OF DIGITS IS”;R
END
R = 1
INPUT “ENTER A NUMBER”;N
WHILE N<>0
A = N MOD 10
R = R * A
N = FIX ( N / 10 )
WEND
PRINT “PRODUCT OF DIGITS IS”;R
END
Using declare sub procedure
DECLARE SUB C(N)
CLS
INPUT “ENTER A NUMBER”;N
CALL C(N)
END
SUB C(N)
R = 1
WHILE N<>0
A = N MOD 10
R = R * A
N = FIX ( N / 10 )
WEND
PRINT “PRODUCT OF DIGITS IS”;R
END SUB
CLS
INPUT “ENTER A NUMBER”;N
CALL C(N)
END
SUB C(N)
R = 1
WHILE N<>0
A = N MOD 10
R = R * A
N = FIX ( N / 10 )
WEND
PRINT “PRODUCT OF DIGITS IS”;R
END SUB
Using declare function procedure
DECLARE FUNCTION C(N)
CLS
INPUT “ENTER A NUMBER”;N
PRINT “PRODUCT OF DIGITS IS”;C(N)
END
FUNCTION C(N)
R = 1
WHILE N<>0
A = N MOD 10
R = R * A
N = FIX ( N / 10 )
WEND
C = R
END FUNCTION
CLS
INPUT “ENTER A NUMBER”;N
PRINT “PRODUCT OF DIGITS IS”;C(N)
END
FUNCTION C(N)
R = 1
WHILE N<>0
A = N MOD 10
R = R * A
N = FIX ( N / 10 )
WEND
C = R
END FUNCTION
Program to find the sum of
the digits of the given number in Qbasic
CLS
INPUT “ENTER A NUMBER”;N
WHILE N<>0
A = N MOD 10
R = R + A
N = FIX ( N / 10 )
WEND
PRINT “SUM OF DIGITS IS”;R
END
INPUT “ENTER A NUMBER”;N
WHILE N<>0
A = N MOD 10
R = R + A
N = FIX ( N / 10 )
WEND
PRINT “SUM OF DIGITS IS”;R
END
Using declare function procedure
DECLARE FUNCTION C(N)
CLS
INPUT “ENTER A NUMBER”;N
PRINT “SUM OF DIGITS IS”;C(N)
END
FUNCTION C(N)
WHILE N<>0
A = N MOD 10
R = R + A
N = FIX ( N / 10 )
WEND
C = R
END FUNCTION
CLS
INPUT “ENTER A NUMBER”;N
PRINT “SUM OF DIGITS IS”;C(N)
END
FUNCTION C(N)
WHILE N<>0
A = N MOD 10
R = R + A
N = FIX ( N / 10 )
WEND
C = R
END FUNCTION
Using declare sub procedure
DECLARE SUB C(N)
CLS
INPUT “ENTER A NUMBER”;N
CALL C(N)
END
SUB C(N)
WHILE N<>0
A = N MOD 10
R = R + A
N = FIX ( N / 10 )
WEND
PRINT “SUM OF DIGITS IS”;R
END SUB
CLS
INPUT “ENTER A NUMBER”;N
CALL C(N)
END
SUB C(N)
WHILE N<>0
A = N MOD 10
R = R + A
N = FIX ( N / 10 )
WEND
PRINT “SUM OF DIGITS IS”;R
END SUB
Program
to print fibonacci series in Qbasic
Write a program in Qbasic to print the
fibonacci series up to tenth term. Using loops-FOR…NEXT & WHILE…WEND
Fibonacci series is the series in which the next number is obtained by the sum
of two number just front of it. The first two numbers are explained by the
user.It can be obtained up to any term.Here, I am only doing of tenth term.You
can change the number of output to any term just by changing the looping
number.Here is example of a fibonacci series. suppose you entered the first two
numbers-1 & 2 and upto the tenth term then your output will be as:
1,2,3,5,8,13,21,34,55,89
Here in the begining 1 & 2 are the entered numbers.3 is the product of 1 & 2 as the definition of fibonacci series given in first.like wise 5 is the sum of 2 & 3 and 8 is the sum of 3 & 5 and so on..You can Download the source file.Here is the program.
Using FOR…NEXT
1,2,3,5,8,13,21,34,55,89
Here in the begining 1 & 2 are the entered numbers.3 is the product of 1 & 2 as the definition of fibonacci series given in first.like wise 5 is the sum of 2 & 3 and 8 is the sum of 3 & 5 and so on..You can Download the source file.Here is the program.
Using FOR…NEXT
CLS
A = 1
B = 2
PRINT A
PRINT B
FOR I = 1 TO 10
C = A + B
PRINT C
A = B
B = C
NEXT I
END
A = 1
B = 2
PRINT A
PRINT B
FOR I = 1 TO 10
C = A + B
PRINT C
A = B
B = C
NEXT I
END
Using WHILE…WEND
CLS
I = 1
A = 1
B = 2
PRINT A
PRINT B
WHILE I < = 10
C = A + B
PRINT C
A = B
B = C
I = I + 1
WEND
END
I = 1
A = 1
B = 2
PRINT A
PRINT B
WHILE I < = 10
C = A + B
PRINT C
A = B
B = C
I = I + 1
WEND
END
Using declare sub procedure Using
FOR…NEXT
DECLARE SUB FIB ()
CLS
CALL FIB
END
SUB FIB
A = 1
B = 2
PRINT A
PRINT B
FOR I = 1 TO 10
C = A + B
PRINT C
A = B
B = C
NEXT I
END SUB
CLS
CALL FIB
END
SUB FIB
A = 1
B = 2
PRINT A
PRINT B
FOR I = 1 TO 10
C = A + B
PRINT C
A = B
B = C
NEXT I
END SUB
Using WHILE…WEND
DECLARE SUB FIB ()
CLS
CALL FIB
END
SUB FIB
I = 1
A = 1
B = 2
PRINT A
PRINT B
WHILE I < = 10
C = A + B
PRINT C
A = B
B = C
I = I + 1
WEND
END SUB
CLS
CALL FIB
END
SUB FIB
I = 1
A = 1
B = 2
PRINT A
PRINT B
WHILE I < = 10
C = A + B
PRINT C
A = B
B = C
I = I + 1
WEND
END SUB
Program to check whether a
given number is prime or composite in qbasic
‘PROGRAM TO CHECK
WHETHER A GIVEN NUMBER IS PRIME OR COMPOSITE
CLS
INPUT “ENTER A NUMBER”;N
FOR I = 2 TO N/2
IF N MOD I = 0 THEN
C = C+2
END IF
NEXT I
IF C>0 THEN
PRINT “IT IS COMPOSITE”
ELSE
PRINT “IT IS PRIME”
END IF
END
CLS
INPUT “ENTER A NUMBER”;N
FOR I = 2 TO N/2
IF N MOD I = 0 THEN
C = C+2
END IF
NEXT I
IF C>0 THEN
PRINT “IT IS COMPOSITE”
ELSE
PRINT “IT IS PRIME”
END IF
END
Using declare sub procedure
‘CHECK WHETHER A
GIVEN NUMBER IS PRIME OR COMPOSITE
DECLARE SUB A(N)
CLS
INPUT “ENTER A NUMBER”;N
CALL A(N)
END
DECLARE SUB A(N)
CLS
INPUT “ENTER A NUMBER”;N
CALL A(N)
END
SUB A(N)
FOR I = 2 TO N/2
IF N MOD I = 0 THEN
C = C+2
END IF
NEXT I
IF C>0 THEN
PRINT “IT IS COMPOSITE”
ELSE
PRINT “IT IS PRIME”
END IF
END SUB
FOR I = 2 TO N/2
IF N MOD I = 0 THEN
C = C+2
END IF
NEXT I
IF C>0 THEN
PRINT “IT IS COMPOSITE”
ELSE
PRINT “IT IS PRIME”
END IF
END SUB
Using declare function procedure
‘PROGRAM TO CHECK
WHETHER A GIVEN NUMBER IS PRIME OR COMPOSITE
DECLARE FUNCTION AB (N)
CLS
INPUT “ENTER A NUMBER”; N
IF AB(N) > 0 THEN
PRINT “IT IS COMPOSITE”
ELSE
PRINT “IT IS PRIME”
END IF
END
DECLARE FUNCTION AB (N)
CLS
INPUT “ENTER A NUMBER”; N
IF AB(N) > 0 THEN
PRINT “IT IS COMPOSITE”
ELSE
PRINT “IT IS PRIME”
END IF
END
FUNCTION AB (N)
FOR I = 2 TO N / 2
IF N MOD I = 0 THEN
C = C + 2
END IF
NEXT I
AB = C
END FUNCTION
FOR I = 2 TO N / 2
IF N MOD I = 0 THEN
C = C + 2
END IF
NEXT I
AB = C
END FUNCTION
Program to check
whether entered year is Leap Year or not
CLS
INPUT “Enter year to check”; Y
IF Y MOD 4 = 0 AND Y MOD 100 = 0 THEN
PRINT “This year is Leap year”; Y
ELSE
PRINT “Entered year is not leap year:”; Y
END IF
INPUT “Enter year to check”; Y
IF Y MOD 4 = 0 AND Y MOD 100 = 0 THEN
PRINT “This year is Leap year”; Y
ELSE
PRINT “Entered year is not leap year:”; Y
END IF
Comments